Resources
Debug commands are useful to observe the switch responses in real time. To disable a debug command use “no debug” command. Using “no debug all” or “undebug all” command can disable all currently running debug commands.
During password recovery, the config register and NVRAM are modified. ROM holds the bootstrap code to start up the router and Flash contains the IO image.
During the process of Spanning-Tree Algorithm execution, redundant ports need to be blocked. This is required to avoid bridging loops. To choose which port to use for forwarding frames, and which port to block, the following three components are used by the Spanning-Tree Protocol:
During the process of Spanning-Tree Protocol execution, Root switch (say, switch A) is elected first. Next, the switch closest to the root switch is selected. This switch is known as Designated switch or Parent switch (say switch B). The frames are forwarded to the root switch(A) through the designated switch(B). Now the lowest cost port on a switch (say switch C) is selected. This is known as the Root port. A Root Port is the port on a switch that has the lowest cost path to the Root Bridge. All Non-Root Switches will have one Root Port. Here, switch B is the designated switch for switch C and switch A is known as the root switch for switch C. Note that switch C is connected to the root switch (A) through its designated switch (B).
Each Telnet port is known as a virtual terminal. Usually, Cisco routers support up to five virtual terminal (VTY) ports, allowing five concurrent Telnet sessions. Please note that the communication server provides more VTY ports. The virtual terminal ports are numbered from 0 through 4. The console and auxiliary ports on Cisco IOS routers and switches are asynchronous serial ports and use asynchronous protocols such as PPP, SLIP, and ARA.
EIGRP, by default, uses bandwidth and delay as metrics fro taking routing decisions.
EIGRP uses auto summarization of routes at major network boundaries.
Enable dynamic NAT on an interface include the following:
Frame Relay offers NBMA (Non Broadcast Multi Access) connectivity to various destinations. There might be several PVCs residing on one serial interface. A result of this would be, no broadcasts are forwarded among these PVCs due to implementation of split horizon rule Split horizon rule prevents a route from being advertised onto the same interface (through which the router was learned). One way to allow broadcasts to propagate among these PVCs is to disable split horizon. But, this may again result in routing loops. The recommended solution to this problem is sub-interfaces. A sub-interfaces are logical subdivisions of a physical interface. Routing updates received on one sub interface can be sent to another sub interface. This enables the FR network administrator to implement the split horizon, and at the same time use multiple PVCs on one physical interface.
Frame Relay supports two type of virtual circuits (VCs):
Frame-Relay supports point-point and multipoint connection types. In point-to-point connection type, a single sub interface establishes a PVC connection to another physical interface or sub-interface. In multipoint connection type, a single sub-interface is used to establish multiple PVC connections to several physical interfaces or sub-interfaces. In multipoint Frame-Relay network, split horizon rule is applicable to broadcast traffic. Another important thing to note when configuring Frame-Relay using sub-interfaces: The physical interface on which sub-interfaces are configured would not be assigned any IP address. Even if one is assigned, it should be removed prior to configuring Frame-Relay. Note that if an IP address is assigned to a physical interface, the sub-interfaces defined within the physical interface will not receive any frames.
Given below are salient features of Frame Relay DLCIs:
Given below are some important features of classful and classless routing protocols: Classfull routing protocols: RIP v1, IGRP are examples of classful routing protocols. It is important to know that classful routing protocols do not exchange subnet information during routing information exchanges. The summarization is always done automatically at major network boundaries. Classless routing protocols: RIP v2, EIGRP, OSPF, BGP v4, and IS-IS are examples of classless routing protocols. In classless routing protocols, subnet information is exchanged during routing updates. This results in more efficient utilization of IP addresses. The summarization in classless networks is manually controlled.
Holddown timers prevent regular update messages from reinstating a route that has gone bad. Here, if a route fails, the router waits a certain amount of time before accepting any other routing information about that route. Holddowns tell routers to hold any changes that might affect routes for some period of time. The holddown period is usually calculated to be just greater than the period of time necessary to update the entire network with a routing change.
In Frame Relay NBMA networks, if no sub-interfaces are defined, then the routers will not be able to communicate routing information due to split horizon rule. Split horizon is a method of preventing a routing loop in a network. The basic principle is simple: Information about the routing for a particular packet is never sent back in the direction from which it was received. To overcome the split horizon, sub-interfaces can be configured on NBMA networks. A sub interface is a logical way of defining an interface. The same physical interface can be split into multiple logical interfaces, with each sub interface being defined as point-to-point.
Internally, STP assigns to each bridge (or switch) port a specific role. The port role defines the behavior of the port from the STP point of view. Based on the port role, the port either sends or receives STP BPDUs and forwards or blocks the data traffic. The different port roles are given below:
Inter-Switch Link (ISL) is one of the VLAN trunking protocols used for switched VLAN networks. It uses frame tagging to identify the VLAN. ISL encapsulates the original Ethernet frame, and a VLAN-ID is inserted into the ISL header
Inter-Switch Link and 802.1Q are two VLAN Trunking Protocols used with Fast Ethernet that Cisco supports. LANE is associated with ATM and 802.10 is associated with FDDI. Also, it is important to note that ISL, 802.1Q, and 802.10 use Frame Tagging to identify the VLANs.
IP access lists are a sequential list of permit and deny conditions that apply to IP addresses or upper-layer protocols. Access Control Lists are used in routers to identify and control traffic. There are two types of IP access lists:
A. Standard IP Access Lists: These have the format, access-list [number] [permit or deny] [source_address]
Keep in mind that:
B. Extended IP Access Lists: IP Extended Access lists have the format, access-list {number} {permit or deny} {protocol} {source} {destination} {port} With extended IP access lists, we can act on any of the following: -Source address - Destination address - IP protocol (TCP, ICMP, UDP, etc.) -Port information (WWW, DNS, FTP, etc.)
The permitted numbers for some important access-lists are: 1-99 : IP standard access list 100-199 :IP extended access list 800-899 : IPX standard access list 900-999 : IPX extended access list 1000-1099 : IPX SAP access list 1100-1199 : Extended 48-bit MAC address access list
Ip address: 192.168.1.1 255.255.255.240 Subnet ID: 191.168.1.0 Available Host IDs: 191.168.1.1 - 191.168.1.14 Broadcast address: 191.168.1.15
Ip address: 192.168.1.17 255.255.255.248 Subnet ID: 191.168.1.16 Available Host Ids: 191.168.1.17 - 191.168.1.22
IP address: 192.168.1.36 255.255.255.224 Subnet ID: 191.168.1.32 Available Host Ids: 191.168.1.33 - 191.168.1.62
IP helper addresses forward a client broadcast address (such as a DHCP or BOOTP requests) to a unicast or directed broadcast address. Helper-address is required due to the fact that routers do not forward broadcasts. By defining a helper-address, a router will be able to forward a broadcast from a client to the desired server or network. There can be more than one helper-address on a network. The helper-address must to be defined on the interface that receives the original client broadcast. Note that “ip unnumbered” command is used to enable IP processing on a serial interface without assigning a specific IP address to the interface.
ISL, 802.1Q are the VLAN trunking protocols associated with Fast Ethernet. The VLAN trunking protocol defined by 802.10 is associated with FDDI. LANE (LAN Emulation) is associated with ATM.
NAT (Network Address Translation) can be broadly classified as below:
Cert-Ex™ Exam Simulators, Cert-Ex™ Network Simulator, Cert-Ex™ Cheatsheets are written independently by CertExams.com and not affiliated or authorized by respective certification providers. Cert-Ex™ is a trade mark of CertExams.com or entity representing Certexams.com.